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Abstract of the moving trihedron that can be determined from the

Bent-solenoid channels are being considered to gene':r[enet formulas [3]

ate dispersions desired for emittance exchange betweenthe , I ’_
o . i e, =—hKe;, e, =Ke;+Te,, € = —Te;, Q)
transverse and longitudinal motions of a muon beam in a o

S
longitudinal ionization cooling channel. Correct field €xyhere the prime indicates derivative with respect to the
pansion around the reference orbit is important for rehablEath lengths along the reference orbik,(s) and(s) are
particle tracking simulation as well as beam dynamics angfe |ocal curvature and torsion of the reference orbit. We
ysis. This paper reviews the magnetic field expansion in &nsider the most common case that the reference orbit is

bent-solenoid focusing channel. In particular, ready-to-usg\yell behaved plane (torsion free) curve, ids) = 0.
formulas for the magnetic field and its potentials are given. Using Frenet-Serret coordinate system, a particle’s posi-

tionr(s) can be written as
1 INTRODUCTION

Bent-solenoid channels are being studied for longitu-

dinal ionization cooling of a muon beam [1], in whichwherer(s) is the reference orbity andy are the trans-

strong |Ongitudinal magnetic field from the solenoid Proverse disp|acements from it. A vector f|em(l’ v, S) can
vides transverse focusing and superimposed transvelse decomposed hs

dipole field provides dispersions desired for emittance ex-

change. In addition, quadrupole field may be superimposed A =A,e, + Aye, + Ages. (3)

to achieve symmetric focusing for example. To study the

beam dynamics in a bent-solenoid channel, magnetic fieldector analysis using the Frenet-Serret coordinates can be
expansion around the reference orbit is needed. Althouglarried out via

general formalism for such expansion is well-established, 96 96 106

reliable ready-to-use result for bent solenoid seems not V¢ = —Z“e, + —e, + 4)

r(s) =ro(s) + zey + yey, (2)

ey — €5,
available. Furthermore, many errors, from typos to tech- Oz dy h 9s
nical mistakes, exist in the literature on field expansion as;; . o _ 19(h4s) | 04, 104, 5)
well as in computer code currently in use. In this paper, h Ox dy  h Os’

following the approach presented in ref. [2], we briefly 0As 104, 1[0A, O(hAy)
review the derivation of field expansion especially for the¥ * 4 = { oy h Os } x h[ s &E]ey
bent-solenoid system and presezddy-to-usexpressions A A

for the magnetic field and the corresponding scaler and vec- + [ 3 Y — 5 1}es ,
tor potentials up to the octupole order. v y

(6)

where the so-called scale factor= 1 + «(s)z.
2 REVIEW OF GENERAL METHOD

The static magnetic fielt in a beam pipe must satisfy 2-2 Scaler potential and recursion formula

the source-free Maxwell equations in vacuim B = 0 Expanding the magnetic field and its potentials as a se-
andV x B = 0. Itis well known that both a scaler potential ries of » andy, a general magnetic field can be specified
¢ and a vector potentiaA can be defined such thBt =  py the expansion coefficients as functionssof Because

VxAandB = —V¢. To study particle transportin abeamthe field must satisfy the Maxwell equations, those expan-
line, it is necessary to have a general field expression thgbn coefficients are interrelated. An important exercise is
depends ofreeparameters yet satisfies Maxwell equationgy jgentify those coefficients that can be chosen freely and

in the neighborhood of a given design orbit. express the field as a function of them.
It is convenient to start with the scaler potential
2.1 Frenet-Serret coordinate system #(x,y, s). Using Taylor seriesp can be expanded as
To describe a particle’s motion around a design orbit o n n—m .m
Frenet-Serret coordinate system is commonly used. Its ¢(z,y,s) = — Z Z anfm’m(s)wi'yf'. )
base vectors are defined by the unit vect@s, e,, e,) =0 m=0 (n —m)l ml
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The Maxwell equations are satisfied if and only if the scalefior the normal, skew, and longitudinal components respec-
potential satisfies the Laplace equatiéfiy = 0. Working tively. Note that we used the absolute multipole strengths
out V2¢ using Egs. (7, 4, 5) and expanding the result intinstead of normalizing them by the dipole strendih Up
a Taylor series of: andy, then requiring the coefficients to the octupole order, the independent coefficient functions
to be zero give the recursive formula that the coefficierdreb,(s) for the solenoid componeriiy(s) for the dipole,

functions must satisfy b1 (s) anday (s) for the normal and skew quadrupolés(s)
N andas(s) for the sextupoles, anlj;(s) andags(s) for the

p n! .

Unmi2 = —Gniom _Z(_@I(np)'[ﬁ (n—pitm octupoles

p=0
+ 2

+ (p+1)a;;7p7m - (p 9 )(n - p)’%/a;pl,m] . (8)
The vector potentiaA is important in Hamiltonian treat-

Although rather obscure, this formula clearly shows thatnent of beam dynamics. To obtain a unique expression of
corresponding to the even and the odt, there are two the vector potential from the scaler potentjalwe choose
independent sets of recursion relations dqr,,’s. Since the gauge
the second indexn specifies the power of y in the po- rAz +yAy, =0 (16)
tential expansion, the odd (even) set of coefficients defines
the normal (skew) field component whose potential is antinstead of the usual Coulomb gauge A = 0. Using this
symmetric (symmetric) to the orbit plane. Furthermoregauge, we can introduce two new functiafiée, y, s) and
only a, o(s) anda,, 1(s) can be independently chosen. AllG(z, y, s) to express the three components of the vector
higher-order (inm) coefficients can be derived from them.potential as
Using these independent coefficients and the recursion for-
mula, though tedious, it is straigh_tforward to express the A, = —yF, Ay =aF, A, = G 17
scaler potential and the magnetic field as functions of these ‘
free parameters.

2.4 \Vector potential

W

Then the magnetic fielB = V x A becomes

2.3 Independent magnetic field components

B — 1 /090G OF 18
The transverse components of the field on the reference © 7 w\oy s | (18)
plane and the longitudinal component on the reference or- 1 bYe oOF
bit are determined by the independent coefficients and B, = 7 (—833 - yas> ) (19)
an,1 Via OF  OF
o B, = x— +y— +2F, (20)
kew : By(x,0 LA om0y
SKew : w(x7 75) - Za‘n,O(s)(n_l)!v ( )
n=1 or
o0 ;17”
normal : By(z,0,s) = Z an,l(S)m , (20) x% " y% — h(yB, — 2B,). 1)
n=0 Ox Jy ‘
longitudinal : B(0,0,s) = ag o(s) . (11) Z’ZE N y@aj LoF—B.. 22)
€ Y

Vice verse, these three field components completely de-
termine the independent coefficients and the 3D magnetigye equations fo? andF are decoupled and can be solved
field. Furthermore, these field components can be freelgparately via Euler's theorem for homogenous forms. It is

chosen. _ _ _easy to verify that their solutions can be written as
In terms of standard (US convention) multipole coeffi-

cientsa,, andb,, defined by [4] o .
o F:;oi"”BS : (23)
By +iBy =Y (b + ian)(x + iy)", (12) N L
n=0 _ — (n—1) _ (n—1)
G—Z(n—i-n_i_l)(wa 2B"Y) . (24)
n=1

the independent coefficients of the transverse field are

_0"By —alb 13 Here the superscrifdin) means thexth order component.
Il = Tggn om0 o (13) Using theF’ andG expressions and Eq. (17), the vector po-
on-1B e tential can be worked out straightforwardly from the mag-
ano = n_lx =mn-Dap_1, (14) netic field expansion. Here we will not spell out the expres-
Oz z=y=0 sions as functions ai,, ,,. (Note that the last expression
ag,o = b (15) for F'inref. [2] is incorrect.)



3 READY-TO-USE FIELD EXPANSION %[2(1’2 3 () — 88) — ] 2

In the last section we outlined the procedure to obtain 1 " , , 5
the Taylor expansion of a magnetic field and its scaler and 6(%2 + by + Kby +K'b1)y
vector potentials. Although straightforward in principle, it
is a rather tedious and fallible exercise to obtain the final 1 1 1, ,
expansions, especially with all the dependent coefficients (#,¥,5) = —5bsy + 3hbs 7y — by (29)
removed. With the help of Mathematica, we did this exer- 1 N o 1, AP (P
cise for the bent-solenoid channels considered for the io*n-g(% bs+ al) 2y — 70— rbg) ay” + (ar+b5)y
ization cooling of a muon beam. We report the ready-to- | . . 5 5 1,, N
use formulas that include all field components up to thE%(z% — 3Kay — 6k°bs) %y — g(b2— Kby + K20y ) 2%y
octupole order, except for the horizontal dipole compo- | ) y . . 5
nentao(s) that makes the zeroth-order orbit non-planat 7 [202 — 3t + (a1 — 3b,) — w"bs] wy
curve. |If the zeroth-order orbit is chosen as reference,; =~ , ) .
k(s) = qbo(s)/ps, whereq andp, are the charge and lon-+35 (263 + by’ + Kby + K'b1)y
gitudinal momentum. The bending radip) = |1/k].

1 1 1

Ay(,y,5) = 5bsw — grbyx® + by zy (30)
$z.y,5) = a0 +boy @5 1 1
Flaa? tbiay - L@+ )y +5 (26705 ah) 2® + 2 (0] — wbp) 2%y — S(ay+ b)) wy?

2 2 s 1 .
1 1 72/_3 /_6 3b8 4 *bl— b/ Qb/ 3
+§a2x3+b2x2y—5[2a2+,€(a1_2b;)_ﬁ/bs]xy2 +30( ay — 3kay — 6k°bs)x +5( h— kb + Kb’y

1

—— [2a}y — 3kb! + K'(ay — 3b.) — K"b,) 2%y?

1 1
—6(2b2—|—b6'+/£b1)y3 + e zt + by 23y 10
1
1 —— (20! p by H 3
-1 [6as + af + 2k(az + 3k'bs) — 2k%(ay — 3b))] 2%y 30 (2 + 0" + bl + b y
1 )
~6 [6bs + by + 2k(by — by) — £°b1 — K'bp] xy® Ay(z,y,8) = —box (31)

1 1 1 1
+ﬂ [6a3+ 2a!/ + b+ k(4ay + 5K'by) — k% (a1 74b;)}y4 75(61 — kby)z? + 5(2111 + b))y + §b1 >

1 1
— 5 (2b2 = kb1 + 3k2bg )2 + 5 (6az — 5kb, — 2k'bs)z %y

= 2 1 1
Bﬁ(”f’ y:8) = @ +biy+aza”+ 2y ry @O 2 (6t + by — ¢ (20 + m(ar — 2) — W]
—= [2a2 + k(a1 — 2b)) — K'bs] y? + ag 2® + 3bs 22y 1
% —E(Bbg — Kby + 2K%by — 6531)0):54
—= [6as + af + 2k(as + 3k'bs) — 2k% (a1 — 3b))] zy? 1
% +ﬂ(24a3 + 3a} + 26520, + 20kKbs) 2y
—— [6bs + b} + 2K(by — b)) — Kby — Kb 1
6 +5, (8603 + 30 — Trbj — 3K'b))2%y?
1
By(z,y,8) = by +biz — (a1 + b))y (27) ~51 [24a3 + 5ay + b2 + 8k(az + 3Kby)
2 / l
—1—11)2 x” — [2a9 + k(a; — 2b) — K'bs| zy —8k%(ay — 3b,)] xy°
" 2 3
- 1
5 (2b2+bg + kb1)y” + b5 2 — = [6bs + b + 2y — b)) — k2by — K'0))

24

1

—~[6as + a} + 2k (ay + 3x'b,) — 2k (ay — 3b.)| 2%y
g (60 af + 2n(0a + 3r'by) = 2n7(e = 3| 4 REFERENCES
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